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A sum rule is constructed which relates the third moment of the imaginary part of the
dielectric function at zero wave vector to an integral of the product of the Laplacian of the

crystal potential and the fluctuation of the electron density.

This sum rule, though rigorous,

will be of real use only when the real solid can be replaced by a solid of pseudoatoms having

only valence electrons,
from other known moments.

A method is found for obtaining an “experimental” third moment

In this approximation some of the recent empiricism about
bonding in crystals can be given a more rigorous basis.

A quantitative application of the

theorem to the prediction of the dielectric constant of GaAs is sketched.

I. INTRODUCTION

The recent works of Phillips! and Van Vechten?
have made extensive use of the optical dielectric
constant due to electronic polarizability to aid in
understanding covalent and ionic bonding in a wide
class of materials, This theory is empiricism
based on good physical notions, but has not been
derived from the Schriddinger equation, More re-
cently, Wemple and DiDomenico? have empirically
found that the dispersion in €,(w) as a function of
frequency shows a systematic correlation with crys-
tal binding and coordination number, It is obvious
that €(w) contains information about the electronic
wave function responsible for bonding. What is not
clear from this empiricism is whether €(w) directly
relates to bonding, or whether wave functions are
a necessary intermediate construct of a complete

quantum-mechanical theory. In this paper we de-
velop a theorem which provides a direct link be-
tween €(w) and some physical quantities of relevance
to bonding,

An exact sum rule relating an integral over the
dielectric function at zero wave vector to the charge
distribution within a unit cell is derived in Sec. II,
While this theorem is exact, it is of real utility in
understanding binding only if the atomic core is re-
placed by a pseudopotential (Sec, III), Silicon, for
example, will be considered a four-electron atom,
In Sec. IV the direct relation between the sym-
metric and antisymmetric charge distributions
and potentials and the magnitude of the optical di-
electric constant is demonstrated. A quantitative
evaluation of the difference in dielectric constant
between Ge and GaAs is obtained by using the
theorem.
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II. OPTICAL THEOREM

Consider a crystal having atoms a, b, c,... in
a unit cell, producing (unscreened) central poten-
tials V,, V,, V., ... . Let the crystal structure,
for convenience, be cubic. The total Hamiltonian
consists of these atomic potentials, electron-elec-
tron interactions, and the electron kinetic energy.
The atomic potentials will be assumed to be con-
tinuous and finite, (The behavior of Coulomb po-
tential at the origin can be included as a limiting
case,) Let the crystal have N electrons of mass
m in a volume §2, The ordinary f-sum rule arises
from the fact that at sufficiently high frequencies
the electron charge density moves as a rigid unit
in an applied uniform oscillating electric field E.
The equation of motion of the c. m. X of the elec-
trons is then

NmZ%+ NK -X=NeEei“t , (1)

The term NK represents a restoring-force tensor
on the rigid charge density motion due to the atomic
potentials, Solving for X and multiplying by the
charge density Ne/§ to obtain the polarization den~
sity P,

P=We?/Q)-mw? T+R)1-E . 2)

At high frequencies, the dielectric tensor €(w) is
thus

- - 2 — i -1
€(w)-T =M<—w21 + K_)

me m
N 4nNe? (- T _ K 3)
T omQ W  omet

and has only a real part.

If we are content to prove the theorem for cubic
crystals, all tensor indices on K and € can be
omitted, We write the real part of €(w) -1 as the
Kramers-Kronig integral over the imaginary part
€;(w):

el(w)-1=%/?%v€za_%7) o' . @

The denominator can be expanded in powers of
(w’/w)? for frequencies higher than any appreciable
contribution to €,(w’), Thus,

€ (w)~1=/m[~ 1/w?) fon w'ey(w’) do'
- (l/w‘*)j[;” w,(w’) dw'see] . (5)

Equating powers of w? in (3) gives two relations:
the usual f-sum rule

(2/1r)j(;°° w'€;y(w’) dw' = 41N/ mQ =w? (6)
and a new one determining K, namely,
(Z/W)fo” we,(w') dw=wiK/m . (7)

HOPFIELD 2

For the moment, the convergence of this integral
will be presumed,

We now construct the meaning of K in terms of
other quantities by examining the restoring force
on a wave function moved rigidly in a crystal. The
crystal will be chosen to be a long rod, and the
electrons will be displaced parallel to the rod, In
this case, there will be no macroscopic field built
up by the displacement, and any restoring force
will be due to K, not to depolarizing fields. Letthe
electron density p(#) be rigidly moved along the
bar by a small distance 4. The force on the center
of mass of the electrons will then be

F= [ e 2 -V, v, F-R,,)pF-3) &r ,
all allatom types;
space allcellsi (8)

where f{., » 1s the position of the atom of type b in
cell ¢ and e is the magnitude of the charge on the
electron, Electron-electron interactions produce
no force on the electron center of mass.

If p(¥) were a constant within the crystal, the
only force would arise from the effect of the mac-
roscopic field on the charge distribution, Since
the macroscopic (average) field is unimportant in
the presumed geometry, the uniform part of p(¥)
can have no effect. If we write

p(F)=p+08p(F) ,

where pis the average electron density inthe crys-
tal and 5p(¥) has a spatial average of zero, we
can replace p(f <3) in (8) by 6p(F~1%). In a cubic
crystal, the force F will necessarily be in the
direction of the displacement &, which is assumed
to be the z direction, The force per unit displace-
ment defines — NK, Expanding 6p(¥ - 12) in powers
of 4, and using the periodicity of the crystal charge
distribution, we find that

K=-1- Z . / 8v,(F) 05p(F) P . )

7 an types of all 9z 9z

atoms inacell space
The number of electrons per unit cell is denoted by
n. For each integration in the sum, the atom po-
sition conveniently can be taken as the origin of
coordinates, Since 8p(¥) oscillates and V goes to
zero at infinity, an integration by parts is legiti-
mate, yielding

k=1 > e .a—zazéé(kﬂﬁp(?)dsv. (10)

% a1l types of all
atoms in a cell space

By supposition, the atomic (bare) potentials V,(¥)
are spherical. If each atom is at a site of cubic
symmetry, this result simplifies to

ket 2

37 a11 atoms 211
b in cell space

op(FIVEV,(T) d*r . (11)
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The optical theorem is the relation

2 L
;[ wie,(w) dw

- Wie

Sp(FIVEV,(F) dr .
3mn b a1t space

(12)
It is valid in this form when all atoms are at sites
of cubic or tetrahedral symmetry.

This theorem is particularly simple for poten-
tials whose long-range part is 1/7, for then V2 V,(T)
vanishes except in the core. If, for example, it
is applied to a possible pseudopotential for sodium

V(?) = 6/7,
V(¥)=e/b,

r>b (13)

r<b

then

2 [" 4r w (1/ .
ﬁ[wea(w)dw 3—"———m y M’Gp(r)dQ,) R

where the integration is carried out over a spher-
ical surface of radius b. The average value of
ép('f) on this surface is in the parentheses. The
weak optical absorption in sodium (i.e., the small
integral) directly implies the smallness of the
electron redistribution 5p(F).

This theorem can be easily generalized to slightly
more complicated situations, First, it is true as
it stands for cubic crystals even if each atom is
not at a site of cubic symmetry. Second, if €, and
€, are the twodielectric functions of auniaxial crys-
tal, the theorem remains true with the replace-
ment of €,(w) in (12) by [e,(w)+2€,(w)].

The restoring-force constant K is related to the
frequencies that the phonons would have if the elec-
trons did not follow the lattice displacements. For
such a hypothetical problem, the mean square
phonon frequency in a cubic Bravais lattice will be
given by

M(w?),, = Z(3mwi+K) , (14)
where Z is the charge of the pseudoatom and M is
the ion mass, The average is taken.over all phonon
polarizations and wave vectors.

A mathematical proof of theorem A which re-
quires no insight will next be constructed. It has
the advantage of being useful for nonlocal potentials
as well as local ones. The Hamiltonian for the
solid is

H=To+ Voe+ Vo,
2
T= ¥ L

’
electrons i 2m

Vee"z——f—— (pqp-a N) ’ (15)

eN
V=== (NVo+ 25 Vipg)
e. o) 0 & ¢Pc’ »

VoD eS® | y el gy
b all space

Charge neutrality eliminates the Coulomb contri-
bution to the zero wave-vector potential, but an
explicit term may remain from a short-range de-
viation of V,(¥) from a Coulomb potential.

The transverse dielectric function for ¢ in the
z direction can be written

€:(w, ¢)= (4n2e?/mw®R) 2
X §(Ey+ liw — Ey),

10| pue’ ] )2
(16)

where |0) and | f) are exact ground and excited
states, respectively, of the many-electron system
in the presence of the periodic potential. The
optical dielectric function is the limit of this ex-
pression for ¢-0. Multiplying (16) by 2w?® /7 and
integrating, one obtains

(2/1r)j(;°°w3ez(w)dw = (87e%/mh2Q)
x (O| [y puse’ ™ HIZ, puye” 7| 0) 17)

by using a commutator and closure. Inthe g-0
limit, the commutators of the sum

Zi pxie

with the electron kinetic energy and with the elec-
tron-electron interaction vanish, The right-hand
side is therefore

0.

%8%‘3%@ ey Z(E)iche‘a°*‘VGZ)(?)i
(18)

) c#o \& 7 ] ax;
The bracket can be integrated by parts, yielding a
term which is the negative of the present term and
a new term in which the operators 8/ 9x; act on
the ¢'®'% terms. The right-hand side of Eq. (17)

is thus
dme? 0
) nQ '
If the particle density is written as p(¥)=p+ 5p(F)
as before, the expectation value in the above equa-
tion is

T X / 8p(E)97V,(F) d*r

atoms b all
inacell space

iqz

tqz;

ZEVGGZ iari
G# i

(19)

(20)

The substitution of this result into Eq. (17) im-
mediately yields (12), which proves the theorem.
A similar theorem, but relating an integral of
the total charge density times V2V(F) to an integral
over the atomic polarizability 8(w) can be demon-
strated for atoms.® In this case, the polarizability
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integral required is
j(;nwsﬁz(w) dw .

The convergence of such integrals depends on the
nature of the potential, The Coulomb potential has
a singularity at the origin which results in the
asymptotic behavior B,(w)~w™*° for large w, This
form is characteristic of the » ! singularity at the
origin, and is expected for hydrogen metal also.
Martin? points out that if the potential V(#) is
analytic, all moments of B,(w) or €,(w) will exist,

This method of proof may prove useful in work-
ing with nonlocal potentials. The theorem as writ-
ten is valid only for local potentials.

III. PSEUDOATOM HYPOTHESIS

The theorem of Sec. II is correct for real solids.

Useful application of the theorem as it stands is
impossible, however, for the integrations involved
extend over all frequencies, and must be carried
out over a range of energies at least as large as
several times the binding energy of the most
tightly bound shell of electrons. Most of the con-
tributions to the integral arise from core electrons
whose contribution to chemical binding is in some
sense small, One possible line of attack on the
elimination of this large but chiefly irrelevant con-
tribution to the integrals is to find theorems about
the difference between such integrals for the solid
and for isolated atoms. Such theorems could be
useful if sufficiently good optical data were available
to evaluate differences of these integrals carried
out over all energies, This cannot be done with
sufficient precision at present. A more useful
line of approach-is a pseudoatom hypothesis, in
which the effect of the core electrons is replaced
by an effective potential, Such a hypothesis is im-
plicit in most of the connections between band-
structure calculations and bonding. It is explicitly
outlined in the following, because the choosing of
pseudopotentials® has most often been done with
band structure, not chemistry, in mind.

The pseudopotential approach® to wave functions
in an atom or solid replaces all but the outer elec-
trons by an effective potential, This effective
potential can, for example, be chosen to have en-
ergy levels for a one-particle problem in agree-
ment® with the measured term values of an atom or
ion having one outer electron, The pseudo-wave-
function is a smooth wave function, lacking the
core wiggles of the true wave function,

In order for the optical theorem to be applicable,
the electron-electron interactions must be a func-
tion only of the separation between the electrons.
In most of space (i.e., outside the cores), the

2

pseudo-wave-functions and the real wave functions
are proportional to each other, and the electron-
electron interactions can be correctly described
in terms of a Coulomb interaction between the
pseudo-wave-functions. Within the core region,
the real and the pseudo-wave-functions differ. In
the core, the description of the Coulomb interac-
tions of electrons in terms of a Coulomb inter-
action between pseudo-wave-functions is not cor-
rect, This error will be important if the core

volume is small.
For polyvalent atoms, the quantities most im-

portant to reproduce correctly are the charge dis-
tributions and excitation energies of the neutral
and singly ionized (of either sign) atoms, These
should be fit by making a many-electron calcula-
tion of the pseudoatom, including electron-elec-
tron interactions. The potential should contain as
few unphysical kinks as possible, for they introduce
high-momentum (and frequency) effects to both
sides of (18). It two different pseudopotentials both
give good pseudoatom properties, both should
satisfy (18). The calculation of the experimental
€,(w) will be more model sensitive for the potential
having larger high- momentum components (see also
Sec. IV). The potential which decreases the more
rapidly for large momenta will be the more useful.

The pseudoatom hypothesis has two parts. First,
it supposes that a central pseudopotential exists
which will yield the correct charge distributions
and low-lying excitations for pseudoatoms which
match those of the true atom outside a (presumed
small) core region, Second, it assumes that the
conditions of the first supposition are sufficient to
guarantee that the chemistry of solids made from
pseudoatoms will closely resemble the chemistry
of real solids. Chemists have recently begun in-
vestigating possible uses of pseudopotential meth~
ods for multielectron atoms and molecules.’

Some problems of interest to molecular chemists
involved small energy differences between dissimi-
lar structures, The pseudoatom approach may not
be sufficiently accurate for such problems. The
first chemistry problem of solid-state physics,
however, lies in understanding the total cohesive
energy of a solid, and is much less subtle.

The size of the core will be the dominant factor
in the accuracy of the pseudoatom point of view,
Obviously, copper cannot be regarded as a one-
electron pseudoatom, its 3d shell being large and
loosely bound, On the other hand, sodium, carbon,
and silicon should be representable as pseudo-
atoms with reasonable quantitative precision. For
the remainder of the paper, we will assume the
validity of the pseudoatom hypothesis, but will re-
strict considerations to cases in which the cores
are small,
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IV. APPLICATIONS

Phillips! and VanVechten® have empirically dem-
onstrated that there is a connection between an
average frequency defined from the dielectric func-
tion and the degree of ionicity in a crystal bond.
They have written the optical dielectric constant at
low frequencies as

€,=€,(0)=1+w?/w?, wf:(éﬂea/m)(N/ﬂ) , (21)

where N/Q is the number of valence electrons per
unit volume (e.g., silicon has four electrons/
atom), They have further split w? into a homo-
polar (symmetric) part and an ionic (antisymmet-
ric) part, and have shown the resulting empiricism
to work well. Since €,(0) can be written in terms
of a Kramers-Kronig integral on €,(w), their em-
pirical result can be interpreted as the proposi-
tion: “There exists a squared frequency having

a chemical interpretation and obtainable from
€,(w). This squared frequency can be written as

a sum of two terms, one relating to the symmetric
part of the problem, and the other to the antisym-
metric part.” We will obtain such a result from
the optical theorem,

Consider a crystal of the zinc-blende structure
as an example, having two kinds of atoms, I and
II. If theorem (12) is divided by the f-sum rule
(5), a squared frequency w? is defined

w? E[w wie,(w) dw/A‘wwez(w)dw

= F)v2 ) 78
== 3m 4, dp (F)V2V,,,(F) d®r . (22)
space

The potential V,,,,(¥) is the bare potential due to
the two atoms I and II in one unit cell. While the
integral is in principle over all space, V2V,
vanishes except within the core regions of atoms I
and II, for each has an # ! potential outside its
core. We define symmetric and antisymmetric
charge distributions and potentials by picking an
origin midway between the two atoms:

Vs= %[Vcell(F)"' Veenr (= )],
V= %[Vcell(i:) - Vcell(— F)] )
ops=3[6p@)+0p(-F)] ,
1
2

8pa=5[6p(F) - 6p(=F)] .
Then

J——_ (/v2 opg d° +_/V2V6 dsr)
wd 3mn i Vs Ps v 1y A0P4 .

space space

(23)

Thus, this mean square frequency w? determined
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from €,(w) is rigorously a sum of two terms, one
arising from antisymmetric observables and the
other from symmetric observables.

The frequency w, is not identically the same fre-
quency as defined by Phillips and Van Vechten.
From a theoretical viewpoint, the positive moments
of €,(w), which do not give a heavy weighting to
states near small band gaps, are a more satisfac-
tory definition of an average appropriate to binding
than is the static dielectric constant used by
Phillips. From a pragmatic point of view, the
“static” high-frequency dielectric constant and its
frequency dependence are all that can be obtained
easily from experiment, Thus, the moments

M3= (2/77) ‘/(;w [ez(w)/ws] dw ,
€= (2/m J " [e;(w)/w] do (24)
and  w2=(2/m) _/0“’ we, (W) dw

are generally known, The moment involved in

(12) cannot be obtained from experimental data
directly, Even worse, what is desired is not real
experimental data for €,(w), but the data which
would have been obtained if experiments were done
on crystals of pseudoatoms. A high-frequency

tail in €,(w) arises from the core “wiggles” of the
valence band electrons in real experiments, These
wave-function wiggles and concomitant tail in €,(w)
are absent for pseudoatoms, At the same time,
the static dielectric constant and low-frequency
dispersion are virtually independent of the high-
frequency tails.,

We have already noted that for Coulomb poten-
tials, €,(w) will fall off as w™**® at high frequencies.
The elementary pseudopotentials used have large
wave-vector components which drop off more
rapidly than those of a Coulomb potential. For ex-
ample, the'pseudopotential form (13) produces a
high-frequency behavior w3, and a rounding of
the corner in this potential will make the falloff
even more rapid, For such pseudopotentials, the
convergence of the moment of €,(w) used in (12)
is fairly rapid, and the value of this moment is
not critically sensitive to the exact form of €,(w),
In this case, a model of €,(w) with parameters
determined by the experimental moments €,, Mj,
and the f-sum rule can be used to evaluate the
experimental wi appropriate to such pseudopoten-
tials,

We take for illustration the model used by
Wemple and DiDomenico?

€, (w)= (1/2)[W? /ww,(b-1)], w,<w <bw,

(25)

€,(w)=0, w<w, or w>bw, .

The plasma frequency is determined by the elec-
tron density. The model obeys the f-sum rule (6)
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and contains two arbitrary parameters, an effec-
tive energy gap w, and a width (b - 1)w, for €,(w).
For this model the parameter w? of (21) is w?
=bw?, The dispersion frequency w? defined by
Wemple and DiDomenico is

€} /My=wi=(wp /w3)[3/(b+1+1/b)] , (26)

and the frequency wﬁ is given by

b+1+1/b
wi:wi(——é-——) . (27)

A typical value of b for a semiconductor is about
3, though b exhibits systematic trends in the Pe-
riodic Table. The parenthesis in (27) varies rather
slowly with b, and is typically about 1.4 for group-
IV semiconductors.

Thus, within a scale factor slightly greater than
one, w? can be identified with the parameter of
w? of Phillips and Van Vechten, Wemple and
DiDomenico used the experimental dispersion fre-
quencies w§ to classify binding. The success of
this scheme may be directly connected to the in-
timate relation between w? and w%, namely,

wi=w; /wh. (28)

The use of w? as the classification parameter con-
tains the effects of the bandwidth of w?, This
result is model dependent, but only weakly so.

Finally, we sketch a simple calculation which
uses the optical theorem for quantitative predic-
tion, Consider w?for the compounds Ge, GaAs,
and ZnSe, These three materials have very similar
electron densities and similar symmetric poten-
tials. The antisymmetric part of the potential
vanishes in Ge and is expected to be approximately
twice as great in ZnSe as in GaAs, As long as this
potential can be considered small, 5p, is propor-
tional to the antisymmetric potential. Thus wi
should have an antisymmetric contribution four
times as large for ZnSe as for GaAs. This rela-
tion is approximately obeyed in this sequence, as
well as in the analogous sequences from the second
and third rows of the Periodic Table.

The value of the increase in w2 for GaAs over Ge
can be evaluated as follows: The smallest recip-
rocal-lattice vector is so large that the dielectric
screening for such wavelengths is not appreciably
affected by the small band gaps. To a good ap-
proximation, the antisymmetric charge distribu-
tion can be calculated from the linear response of
a uniform electron gas to the antisymmetric poten-
tial. In this case

(kzwi)GaAs - (ﬁzwi)(}e

= (11%Q g1, /96mm) 2| V2 |?| G| [1- 1/€(G)] , (29)
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where V, is the antisymmetric electrostatic po-
tential

Ve=(1/Qce11) -/;911 e-ia.}VA r) d*r

and €(G) is the static dielectric function of the free-
electron gas at wave vector G.

In principle, the values of V, should be directly
obtainable from the pseudoatom potentials of Ge,
Ga, and As., We have not yet computed these, and
reliable values are available from the literature
only for Ge. This difficulty can be circumvented
by using the antisymmetric pseudopotential coef-
ficients determined by Cohen and Bergstresser®
for GaAs, Their numbers for V, can be directly
used by correcting them for the lack of screening
[the bare potential is wanted in (29)] and for the
structure factor present in their definition. Table
I shows the results of this calculation. The value
for the difference of (%Zw,)? obtained is 14.5(eV?).
The contributions of the first and second reciprocal-
lattice vectors are almost equal, and that of the
third reciprocal-lattice vector negligible. For
comparison, the experimental value is 12, 2(eV?)
if b is chosen as 3 for both Ge and GaAs, and
13.5(eV?) if (Zw,)? is evaluated by using (29). The
theoretical value reproduces the difference in di-
electric constant between Ge and GaAs with this
same precision, about 20%. Better suppositions
about the magnitude of the pseudopotential would
be necessary to claim a theoretical accuracy as
good as this agreement indicates, A better ap-
proximation than the Hartree dielectric function
may also be needed.

V. CONCLUSION

A theorem was proved relating the third moment
of €,(w) to an integral over a product of the electron
density and the Laplacian of the bare crystal po-
tential. This theorem relates average optical pro-
perties directly to quantities of relevance to bond-
ing., Thistheorem cannot be effectively used unless
the core electrons are eliminated from the problem,
and the atoms thus replaced by pseudoatoms, The
problem of obtaining an experimental value of the
third moment for a crystal of pseudoatoms from
experimental data on a real crystal has been solved
for semiconductors by noting that for the pseudo-
potentials generally used in band-structure calcu-
lations the third moment integral would converge
fairly rapidly. The third moment for use with such
potentials can therefore be extrapolated from a
model of €,(w) chosen to fit the experimental first,
minus first, and minus third moments. The rapid
convergence means the extrapolated value of the
third moment is not critically dependent on the
model,

The theorem and the third-moment extrapolation
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TABLE I. Contribution of the antisymmetric poten-
tial to the calculation of (%w,)?. Only these first three
reciprocal-lattice vectors are included.

V3 vy Vi
Cohen and
0.95 0.68 0.14 Bergstresser
(Ref. 8) (eV)
Corrected for
1.34 1.15 0.11 screening and
structure factor (eV)
7.8 6.3 0.4 Contribution

to (Fw,)? (eV)?

provide a direct understanding of two empirical
results, First, the division by Phillips of the
average squared energy gap Ef, (defined through the
high-frequency dielectric constant) into a homo-
polar and an ionic part is given a solid justification
without the necessity of investigating any details
of band structure, Second, the parameter €2 used
by Wemple and DiDomenico to classify crystal
binding is found to have a direct relation to the
third moment of €,(w). This parameter may there-
fore be somewhat more closely related to param-
eters of relevance to binding that is E2,

If atomic pseudopotentials suitable for chemical
considerations can be found, it should be possible

to use the present theorem as an aid to the quan-
titative understanding of crystal binding, Most
evaluations of atomic pseudopotentials to date have
relied heavily on the energy levels (and not on the
charge distributions) of systems such as Ge***, A
pseudopotential based on the energy and the charge
distribution of neutral Ge would be more relevant
for pseudoatom chemistry, A numerical applica-
tion of the theorem was given to predict the charge
of €, from Ge to GaAs. This calculation was based
on a band-structure estimate of the antisymmetric
potential. The difference in dielectric constant
€ge— €gans inferred from this calculation is in
reasonable accord with experiment. To the extent
that linear dielectric response can be used to treat
the antisymmetric charge distribution, it should
be possible to predict such differences in many
compound semiconductors. The potential depen-
dence of the third-moment extrapolation must be
examined in detail in order to accomplish this,
Until further work is done on this extrapolation and
on pseudoatom pseudopotentials, the above numerical
calculation can only be regarded as suggestive that
the method may be quantitatively useful.
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